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I’ve never had a student pose this question to me in 
precisely this technical kind of way. But I’ve certainly 
had many occasions in which a student seems to have 
assumed something like

𝑎 + 𝑏 =  𝑎 + 𝑏  (1)

and then been surprised to discover that it isn’t true. 
“Why not?” might be a perfectly reasonable question for 
them to ask. But how would you answer it?

Substituting numbers

Perhaps the most obvious way to respond is to invite the 
student to try their equation with numbers. If algebra 
is ‘generalised arithmetic’, then a statement like (1) is 
really a claim about pairs of numbers (𝑎 , 𝑏 ) and how 
they behave. It makes sense to specialise and check it 
out with some example pairs of numbers.

In this case, finding a counterexample is extremely easy. 
Nearly every pair of numbers is a counterexample. Doing 
this, students may discover not only counterexamples 
like

1 + 2 ≠ 1 + 2 ,

but they may also realise that the statement itself only 
makes sense if both 𝑎  and 𝑏  are non-negative. There 
could be some interesting discussion about whether 
substituting negative values of 𝑎  and 𝑏  disproves the 
statement or just indicates that we should have specified 
it more precisely by saying 𝑎 , 𝑏  ≥ 0.

Through trial and error, students may discover that (1) is 
true when both 𝑎  and 𝑏  are zero. In fact, (1) is true when 
either 𝑎  or 𝑏  is zero, and this distinction might be worth 
thinking about and discussing.

We could prove that this solution is unique (i.e. that there 
are no other solutions) by squaring both sides of (1):

( 𝑎 + 𝑏 )2 = ( 𝑎 + 𝑏  )2 (2)

We have to be careful with this step, because squaring 
both sides can introduce spurious solutions. We would 
have got to the same place as (2) if we had started with 
(3), rather than (1):

− 𝑎 + 𝑏 =  𝑎 + 𝑏 (3)

So, our solutions to (2) will also be solutions to (3). 
However, in this case, the left-hand side of (3) is never 
positive, and the right-hand side of (3) is never negative, 
so the only possible solutions to (3) will be 𝑎 = 𝑏 =  0. This 
means that we won’t generate any additional solutions 
by squaring (1).

If we expand (2), we get

𝑎 + 𝑏 =  𝑎  + 2 𝑎 𝑏 + 𝑏 ,

from which it follows that 𝑎 𝑏 =  0. This means that  
𝑎 𝑏 =  0, meaning that either 𝑎 = 0 or 𝑏 = 0. There is some 
good reasoning involved in going through this and not 
getting confused and concluding 𝑎 = 𝑏 =  0, which is not 
the same. The argument is identical to the final step of 
solving a quadratic equation by factorisation, where we 
use this zero-product property. 

When working on surds, it can be nice to contrast 
something like 3 + 12 =  15, which is false, with  

3 + 12 =  27, which is true, and to have students 
invent examples like this (Foster, 2022).

This all seems like useful thinking. But does any of 
this address the ‘why’? It’s easy to fall into the trap of 
answering ‘why’ questions by demonstrating ‘that’, 
but not touching the ‘why’. The student might say, “OK, 
I see that it doesn’t work in general. But why doesn’t it 
work?” Answers like “Square rooting isn’t distributive 
over addition” are just re-stating the fact in more formal 
language, rather than explaining why.

Inequalities

When something isn’t equal, we can always use the ‘not 
equal’ sign:

𝑎 + 𝑏 ≠ 𝑎 + 𝑏  

But it’s even better if we can use an inequality sign, 
because then we’re making a stronger statement. The 
student’s experimentation so far may have suggested 
that 

𝑎 + 𝑏 ≤ 𝑎 + 𝑏  
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with equality only when 𝑎 = 0 or 𝑏 = 0. The square root 
operation can be described as a sub-additive function. 
When you apply the function to a sum of several values, 
you never get more than if you apply the function to each 
of the values separately and add them up.

Can we see why this must be? The argument that we ran 
through above can do this. The right-hand side of (2) will 
always be greater than the left-hand side of (2), unless 𝑎 

=  0 or 𝑏 = 0. So, ( 𝑎 + 𝑏 )2 ≤ ( 𝑎 + 𝑏 )2, with the equality 
only if either 𝑎 = 0 or 𝑏 = 0. A rectangular area diagram 
could help to show what’s going on.

We can see in this diagram that the square on the right, 
with area 𝑎 + 𝑏 , must be smaller than the entire square 
on the left, with area 𝑎 + 𝑏 + 2 𝑎 𝑏 . They will only be 
equal if 𝑎 𝑏 =  0, meaning that either 𝑎 = 0 or 𝑏 = 0. Does 
this count as ‘an explanation’?

Graphing

Perhaps a graph might help? Here we have two functions, 
both of two variables:

𝑓1(𝑎 , 𝑏 ) =  𝑎 + 𝑏  and 𝑓2(𝑎 , 𝑏 ) =  𝑎 + 𝑏  .

This makes it challenging to draw a picture on a flat 
piece of paper. To make things easier, we could hold one 
variable constant (e.g. set 𝑏 = 1) and vary the other, so 
comparing 𝑓1(𝑎 ) = 𝑎 + 1 with 𝑓2(𝑎 ) = 𝑎 + 1.

We see, to the right, the red curve (𝑓2) is never below 
the blue curve (𝑓1), and they coincide when 𝑎 = 0. We 
could think about the translations needed to transform 
the red curve into the blue curve and vice versa, and this 
might provide additional insight into ‘why’. Here are the 
surfaces in 3D.

Again, we see that the red surface (𝑓2) is never beneath 
the blue surface (𝑓1), and they match all the way along 
the 𝑏 𝑓 and 𝑎 𝑓 planes, where either 𝑎 = 0 or 𝑏 = 0.

Pythagoras’ Theorem

Where square roots are involved, Pythagoras’ Theorem 
is rarely far away. We can take 𝑎  and 𝑏  to be the legs 
of a right-angled triangle, and this gives a hypotenuse of 

𝑎 + 𝑏 . By the triangle inequality (or ‘common sense’), 
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the hypotenuse can’t be longer than the sum of the two 
legs, because the shortest distance across the 
hypotenuse must be the straight line that connects the 
two vertices that it joins. 

So, 𝑎 + 𝑏 ≤ 𝑎 + 𝑏  , with equality only in the degenerate 
case, where either of the legs becomes of zero length, and 
the triangle collapses into a straight line.

Does this finally ‘explain it’. I think I would say that it 
‘explains it’ in terms of Pythagoras’ Theorem. Perhaps 
all that an explanation in mathematics ever can be 
is a reduction to something else – ideally something 
perceived as more basic or already known or accepted. 
An explanation must always be ‘in terms of something’, 
and an explanation succeeds if it is given in terms of 
something that the student has already agreed to accept.

Other functions

Functional equations like 𝑎 + 𝑏 =  𝑎 + 𝑏   tend to 
appear more in advanced mathematics than in secondary 
school mathematics. But I think that there’s plenty to 
explore at a more elementary level. A good task for 
students getting to grips with functions could be to 
explore Cauchy’s additive functional equation – a grand 
name for 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦). What kind of functions 
will satisfy this equation, and thus be termed additive?

The fact that the function 𝑓(𝑥) =  𝑥, 𝑥 ≥ 0 is concave 
downwards corresponds to it being sub-additive. A 
concave upwards function, such as 𝑓(𝑥) =  𝑥2, will instead 
be super-additive, meaning that 𝑓(𝑥 + 𝑦) ≥ 𝑓(𝑥) + 𝑓(𝑦). 
In this case, (𝑥 + 𝑦)2 ≥ 𝑥2 + 𝑦2, which students can show 
by expanding the left-hand side and revealing the lurking   
2𝑥𝑦 term.

The territory of sub-additive and super-additive 
functions covers a lot of common errors that students 
make by assuming that things are additive that aren’t. 
For example,

(𝑥 + 𝑦)2 =  𝑥2 + 𝑦2,

sin (𝑥 + 𝑦) =  sin 𝑥 + sin 𝑦,

𝑎 𝑥+𝑦 =  𝑎 𝑥 + 𝑎 𝑦.

Perhaps the language of additivity, sub-additivity and 
super-additivity, which I think is unfamiliar in schools, 
could be useful in discussing these things and making 
some of the differences more explicit.

There are lots of nice little ‘theorems’ to explore in this 
area, such as:

1. All non-increasing functions are sub-additive.

2. All non-decreasing functions are super-additive.

3. Functions which are both sub-additive and super-
additive are additive.

4. Super-additivity is the ‘dual’ condition of sub-
additivity, meaning that if 𝑓 is sub-additive, then −𝑓
is super-additive.

5. If an invertible function 𝑓 is sub-additive, then 𝑓−1 is
super-additive.

For more details, see Alsina & Nelsen (2009, pp. 119-120; 
2010, pp. 229-230).

References

Alsina, C., & Nelsen, R. B. 2009 When less is more: Visualizing basic 
inequalities (No. 36), MAA. 

Alsina, C., & Nelsen, R. B. 2010 Charming proofs: A journey into elegant 
mathematics (No. 42), MAA.

Foster, C. 2022 ‘Adding surds’, Teach Secondary, 11(7), p.13.  
www.foster77.co.uk/Foster,%20Teach%20Secondary,%20
Adding%20surds.pdf 

Keywords:   Additive, Functional equations, Functions, 
Misconceptions, Sub-additive, Super-additive,  
Square roots

Author:  c@foster77.co.uk

website: www.foster77.co.uk

https://www.m-a.org.uk/
https://www.foster77.co.uk/Foster
https://foster77.co.uk/
https://www.foster77.co.uk/

