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Certain topics can seem rather ‘procedural’, and it can be 
difficult to find ways to extend the challenge for students 
who are successful with them, without just using harder 
numbers. For example, students may be able to rationalise 
the denominator in a fraction such as

3 − 2
2 + 1

by writing (Note 1):

 
3 − 2

2 + 1
 = ( 3 − 2

2 + 1 )  ( 2 − 1
2 − 1 ) 

 = 
( 3 − 2 )  ( 2 − 1 ) 

2 − 1

 = 
3 2 − 3 − 2 + 2

1
 = 4 2 − 5.

It’s possible to generate lots of practice in topics like this 
by asking students to create their own examples. For 
instance, you could ask them to invent other fractions 
with irrational denominators that are also equal to  
4 2 − 5. The process of trial and error can lead to valuable 
practice, whether or not students’ attempts turn out to 
equal the desired 4 2 − 5. In the process, they begin 
to unpick the procedure to understand, for example, 
what must happen for the denominator to simplify to 1. 
When students succeed, you can offer the challenge of 
creating the most complicated-looking example that they 
can, or using certain numbers, such as 13, somewhere 
in their starting fraction, or only using the number 2 
throughout. I call these sorts of tasks mathematical études  
(Foster, 2018).

How might this topic be further extended? What if we 
began instead with a fraction containing a cube root in 
the denominator, such as 

1
3 2 + 1     

(Note 2).

This looks superficially like a similar problem. But can 
we ‘rationalise the denominator’ in a case like this? What 
about for other, similar-looking fractions? If you haven’t 
previously considered this, you may wish to pause to 
think about it before reading on.

***

Doing this might sound impossible, because there is 
no ‘difference of two cubes’ to match the ‘difference 
of two squares’ that we rely on when rationalising a 
denominator containing a square root. However, it is 
certainly possible.

Let 𝑟 = 3 2 + 1, the irrational denominator of our 
fraction. We require 1

𝑟  in a simplified form, with a  
rational denominator.

We rearrange as
 3 2 = 𝑟 − 1,

and, cubing both sides; this gives

 2 = (𝑟 − 1) 3

 2 = 𝑟 3 − 3𝑟 2 + 3𝑟 − 1.

Students might think that we are stuck at this point, 
because they assume that they need to isolate 𝑟  and make 
it the subject of the equation. But that isn’t necessary. 
Expressing 1

𝑟  in terms of other 𝑟 s is fine, because we can 
just substitute 𝑟 = 3 2 + 1 for those other 𝑟 s at the end. 
So, we have

 3 = 𝑟 3 − 3𝑟 2 + 3𝑟 

 
3
𝑟  = 𝑟 2 − 3𝑟 + 3

 
1
𝑟  = 𝑟 2 − 3𝑟 + 3

3
We have now rationalised the denominator, because we 
have a denominator of 3, and we can substitute 3 2 + 1 
for each remaining 𝑟  in the numerator, to obtain

 
1
𝑟  = (

3 2 + 1) 2 − 3(3 2 + 1)  + 3
3

 
= (

3 2) 2 + 23 2 + 1 − 33 2 − 3 + 3
3

 
= (

3 2) 2 − 3 2 + 1
3

.

The numerator looks messy, but that doesn’t matter: the 
denominator is rational, which is all that we wanted. It is 
reassuring to check on a calculator that

(3 2) 2 − 3 2 + 1
3

 = 1
3 2 + 1

 ,

because it isn’t easy to spot, just by looking, whether 
these sorts of things ‘look right’ or not. Students can 
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create problems like this for each other, and check 
their simplifications (at least approximately) on  
their calculators.

Another nice way to extend this topic is to explore 
nested surds, such as 2 2 + 3. If you evaluate this on 
a calculator, you get 2.414213562... Does this look a 
bit familiar? Could it possibly be 2 + 1 in disguise? It 
doesn’t particularly look like 2 + 1, but appearances can 
be deceptive.

We assume (tentatively):

2 2 + 3 = 𝑝 + 𝑞 ,

where 𝑝 , 𝑞 > 0. If supposing that 2 2 + 3 can be  
written as the sum of two roots isn’t correct, then we 
should reach some contradiction at some point, such 
as finding that 𝑝 + 1 = 𝑝 , say, and that will tell us that 
2 2 + 3 doesn’t take this form. But let’s see.

We begin by squaring both sides to obtain

2 2 + 3 = 𝑝 + 2 𝑝 𝑞 + 𝑞 ,

For this to hold, 𝑝 𝑞 = 2 and 𝑝 + 𝑞 = 3. These equations are 
symmetrical in 𝑝  and 𝑞 , because our original expression,  

𝑝 + 𝑞 , was symmetrical. This is a good check that we 
haven’t (hopefully) made an error. So, the two solutions  
(𝑝 = 1, 𝑞 = 2 and 𝑝 = 2, 𝑞 = 1)  are essentially the same 
solution. So, we can write

2 2 + 3 = 2 + 1 = 2 + 1

as suspected.

Now that we have seen that it is true, we can perhaps get 
there more elegantly:

 2 2 + 3 = 1 + 2 2 + 2

 = (1 + 2) 2

 = 1 + 2 .

Another way to ‘show that’ something like  
2 2 + 3 = 1 + 2 is true is to square both sides and 

see that the same result (1 + 2 2 + 2)  is obtained (Note 
3). Doing this, we can now begin to see that it is ‘obvious’ 
that these expressions are equal!

An alternative method that I often see used involves pre-
empting the 2 portion of the answer from the beginning, 
by writing:

2 2 + 3 = 𝑎 + 𝑏 2 .

The argument would be that these expressions are 
clearly ‘all about’ multiples of 2. It would be ridiculous 
to suppose a 3 in the second term, for example.

Assuming that the expression can be put into this form, 
squaring gives

2 2 + 3 = 𝑎 2 + 2𝑎 𝑏 2 + 2𝑏2.

However, this now becomes a bit cumbersome, because 
we obtain the equations:

 2𝑎 𝑏 = 2, so 𝑎 𝑏 = 1

and 𝑎 2 + 2𝑏2 = 3,

and these are messier to solve than the equations that we 
obtained with the form 𝑝 + 𝑞 . Because our unknowns 
are now at two different levels (not-multiplied-by- 2 and 
multiplied-by- 2), we have lost the symmetry. Now, we 
have to square the 𝑎 𝑏 = 1 equation, which introduces 
extraneous negative solutions, which we will then have 
to exclude later on. I think it is normally much easier with 
problems like this to write 𝑝 ± 𝑞  in every case. We are 
punished for being too specific and ‘helpfully’ including 
the 2.

It’s worth working through to see what happens if you try 
something like

2 2 + 3 = 𝑎 + 𝑏 3 ,

which includes the unlikely 3, rather than 2. We would 
be astonished if this worked! This time, squaring gives

2 2 + 3 = 𝑎 2 + 2𝑎 𝑏 3 + 3𝑏2,

and the two equations that we have to solve are now

𝑎 2 + 3𝑏2 = 3.

and  𝑎 𝑏 3 = 2, so 𝑎 𝑏 = 2
3.

If 𝑎  and 𝑏 are rational, then 𝑎 𝑏 can’t be equal to 2
3, and 

therefore there are no values of 𝑎  or 𝑏 which will satisfy 

2 2 + 3 = 𝑎 + 𝑏 3.

We are never going to get a combination of integers and  
2s to equal something to do with 3. This is for 

the same reason that any claimed equation linking  
2 and 3 only via addition and multiplication of 

integers, such as

5 2 + 4 3 = 14,

can only ever be approximately true.

There is much for students to explore here, which gives 
opportunities to review solving simultaneous equations, 
quadratic equations and honing their algebraic 
skills. They also have the opportunity to behave like 
mathematicians in asking and answering their own 
questions and developing a reasoned argument to justify 
their conclusions.
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Notes

1. In this case, the denominator is not just rationalised 
(made rational) but it has become an integer 
(‘integerised’?), which happens to also be unity 
(‘unitised’?). An extension task can be for students 
to devise examples in which the denominator 
disappears (i.e. becomes equal to 1) like this.

2. I am grateful to Posamentier & Salkind (1996, pp. 
236-237, §20-17) for a related problem that got me 
thinking about this.

3. Of course, the squares of two expressions being 
equal doesn’t necessarily mean that the original two 
expressions were equal: one could have been the 
negative of the other. But, in this case, we know that 
both expressions are strictly positive, so this caution 
doesn’t apply.
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