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Closed but provocative questions: curves enclosing unit area
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This article describes a task leading to work on curve sketching, simultaneous equations
and integration to find the area enclosed between two curves. An initial closed question
is used to confront students with a provocative answer, which they then explore in a
much more open-ended way.
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Sometimes mathematics teachers are told that open questions (those with more than
one correct answer) are better than closed questions (those with one right answer), but
this is too simplistic. Some closed questions can have answers that are so provocative
that they invite further exploration or demand an explanation, leading to rich mathe-
matical thinking.[1] I often like to offer students a closed starting point, which draws
on routine procedures that they have learned, but which leads to a provocative result
which motivates them to go on to pursue related mathematics in a more exploratory
way.[2,3]

Here is an example.
Find the area enclosed between the curves y = 4x2 − 18x + 22 and y = −2x2 +

12x − 14.
On the face of it, this seems like a perfectly standard textbook question – but the

outcome is striking. These curves intersect when 4x2 − 18x + 22 = −2x2 + 12x −
14; i.e. when 6x2 − 30x + 36 = 0. So x2 − 5x + 6 = 0, so (x − 2)(x − 3) = 0, so at (2,
2) and (3, 4).

So

Area =
∫ 3

2

(
−6x2 + 30x − 36

)
dx =

[
−2x3 + 15x2 − 36x

]3
2 = 1.

The area between these curves is 1 (Figure 1).
Although we have now answered the initial closed question, clearly we have only just

begun. How did we set this up to come out so nicely? (Sometimes students will express
surprise or ask, ‘How did you make that happen?’) The main task then becomes to create
more examples where two curves enclose unit area and to see what we can find out about
how to go about it. Encouraging students to generate their own examples to satisfy a
mathematical constraint is a powerful pedagogical approach.[4]
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Figure 1. Two curves enclosing unit area.

One possible way to generate more examples would be to translate these two
curves by the same vector. For example, if we let x → x + a and y → y + b then
we will obtain as many pairs of curves as we like enclosing a region congruent to
that shown in Figure 1, and therefore of unit area. Likewise we could scale horizon-
tally and vertically by factors k and 1/k, where k > 0, and obtain stretched versions
of these curves, still enclosing unit area. This may be useful thinking for students
but is perhaps not particularly exciting. With this sort of task, it is not enough just
to find examples – students need to be challenged to find ‘surprising’ or ‘impressive’
examples!

A simple way to start might be to investigate the area enclosed between a single parabola
and the x-axis, so it seems worth exploring integrals of the form

∫ b

a
− (x − a) (x − b) dx,

where a < b. Geometrically, this integral will be equal to the area enclosed between the
curve y = (x − a)(x − b) and the x-axis. So we can calculate

∫ b

a

− (x − a) (x − b) dx =
∫ b

a

(
−x2 + (a + b) x − ab

)
dx
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=
[
−x3

3
+

(a + b) x2

2
− abx

]b

a

= 1
6

(−2(b3 − a3)

+ 3 (a + b)
(
b2 − a2) − 6ab(b − a))

= 1
6

(b − a)
(
−2

(
b2 + ab + a2) + 3 (a + b)2 − 6ab

)
= 1

6
(b − a)3.

This gives us the useful result that

6

(a − b)3

∫ b

a

(x − a) (x − b) dx = 1, when a < b.

If we want to avoid fractional coefficients in the equations of our curves, we can set
b − a = 1, so, for example, a = 1 and b = 2, to give

∫ 2

1
−6 (x − 1) (x − 2)dx = 1 (∗)

So the integrand here is −6x2 + 18x − 12. This means that the area enclosed between
the curve y = −6x2 + 18x − 12 and the x-axis is 1 (Figure 2).

Figure 2. A parabola enclosing unit area above the x-axis.
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Figure 3. A parabola enclosing unit area in the first quadrant.

As before, we can consider simple transformations of this solution. Clearly, it would be
possible to translate this curve horizontally by letting x → x + a and thus obtain as many
congruent regions as we like between the curve and the x-axis, all enclosing unit area. A
slightly different possibility would be to translate the curve 1 1

2 units to the left and then
stretch it by a factor of 2 in the y-direction, to obtain y = −12x2 − 3. The ‘half’ quadratic
bounded above by this curve, below by the x-axis and to the left by the y-axis will enclose
unit area (Figure 3).

Less symmetrical solutions within the first quadrant (making use of both axes as bound-
aries), such as y = 1

9 (x + 1) (3 − x) (Figure 4), are also possible. These can be obtained
by choosing any arbitrary quadratic with one positive root α and one negative root, in-
tegrating from x = 0 to α to obtain I, and then scaling the quadratic by 1/I, thus giv-
ing a region with unit area. It is also possible to obtain such solutions by simplifying
−

∫ b

0 k(x − a)(x − b)dx = 1, where a < 0 and b > 0, to obtain k = 6
b2(b−3a) . (Note that
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Figure 4. A parabola enclosing unit area in the first quadrant.

b $= 3a, since a and b are of opposite sign.) Choosing the values a = −1 and b = 3, for
instance, gives k = 1

9 and the solution y = 1
9 (x + 1) (3 − x) stated above and shown in

Figure 4.
However, there is no reason to restrict regions to being bounded by the axes. Since we

know from (∗) that
∫ 2

1 −6 (x − 1) (x − 2) dx = 1, any pair of functions with a difference
of –6x2 + 18x − 12, such as the parabola y = 6x2 and the line y = 18x − 12, will enclose

Figure 5. A line and a parabola enclosing unit area.
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Figure 6. Two parabolas (the same way up) enclosing unit area.

unit area, as shown in Figure 5. In a similar way, we can use our result (∗) to find pairs of
quadratics that will work. We simply choose two quadratic expressions with a difference of
−6x2 + 18x − 12, such as y = x2 + 10x − 5 and y = 7x2 − 8x + 7, and these graphs will
enclose unit area, as shown in Figure 6. (Students may be surprised that quadratic curves
‘the same way up’ – i.e. with coefficients of x2 having the same sign, can enclose a finite
area.)
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Figure 7. Two lines and the y-axis enclosing unit area.

Clearly there are many other directions in which students might go from the given
starting point. For example, they might consider regions bounded between two lines and
an axis, such as in Figure 7, where the area of the shaded triangle may be seen as the
difference between a right-angled triangle of area 3 and a scalene triangle of area 2. While
not requiring integration in this case, some cases may call on careful reasoning involving
similar triangles, or the solution of simultaneous equations. For instance, students might
consider the question: Can three lines specified by equations with integer coefficients, none
of which is horizontal or vertical, enclose a triangle of unit area? Alternatively they might
explore cubics or hyperbolae. In this way, the task is open enough to support productive
exploration at a variety of levels.
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Effectively using multiple technologies
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Details regarding three examples where students were engaged in mathematics reason-
ing in effective and productive ways are shared. Technology in these instances allowed
for students to share their thinking in ways that might not have otherwise been possi-
ble. These examples also serve to show how the choice of technology influences the
mathematics to be learned from a mathematical task.

Keywords: technology; mathematics; mathematics education

1. Introduction

The use and choice of technology in the classroom as a conduit for mathematics learn-
ing must be purposeful. Planning for technological opportunities, that engage all students,
while also accomplishing the learning goals of the enacted lesson are important. To that
end, I have found that the use of mathematics technology, along with effective and engaging
mathematical problems that are of a high cognitive demand,[1] allow students to commu-
nicate and share mathematical thinking in ways that may not have been previously possible
for them. Technology also allows me to better understand what my students understand.

Additionally, the National Council of Teachers of Mathematics have also indicated their
strong support for technology use in teaching and learning mathematics through their Tools
and Technology Principle,[2] which states:

‘An excellent mathematics program integrates the use of mathematical tools and technology
as essential resources to help students learn and make sense of mathematical ideas, reason
mathematically, and communicate their mathematical thinking’. [2,p.5]

To illustrate how these ideas have played out in practice, I share several examples where
the structure of the task and the use of technology allowed students to engage in effective
and productive mathematical thinking (examples come from courses I have taught for
future secondary teachers). More importantly, the use of different technologies highlights
the different mathematical ideas and levels of understanding that can be accessed due to
the choices of technology.
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